オルタナティブ・ブログ > 吉政忠志のベンチャービジネス千里眼 >

IT業界でベンチャービジネスの支援をしている執筆者が日々の活動ログと感じたことを、徒然なるままに書き綴っていきます。

グーグルのクラウドを支えるテクノロジー > 第84回 Autopilot:クラスタ管理システムのオートスケーリング機能(パート1)

»

私が編集支援しているCTC教育サービスのコラム「グーグルのクラウドを支えるテクノロジー > 第84回 Autopilot:クラスタ管理システムのオートスケーリング機能(パート1)」が公開されました。興味がある方はご覧ください。

###

はじめに

 今回からは、2020年に公開された論文「Autopilot: Workload Autoscaling at Google Scale」を元にして、Googleのデータセンターのクラスター管理システム(Borg)で用いられる、オートスケーリングの仕組み(Autopilot)を紹介していきます。今回はまず、垂直スケーリングに用いられる、リソース使用量の予測モデル(統計モデル)を解説します。

Autopilotの概要

 前回の記事では、Googleのデータセンターでは、独自のクラスター管理システム(Borg)により、さまざまなジョブ(アプリケーション)をコンテナでデプロイしている事を説明しました。1つのジョブに対して、複数の「Task」が起動しますが、この際、1つのTaskに割り当てるCPU時間とメモリー容量の上限(垂直スケーリング)、および、Taskの数(水平スケーリング)を設定することができます。Autopilotは、稼働中のジョブに対して、これまでのリソース使用状況に基づいて、これらの設定値を自動調整する機能を提供します。全体の構成は、図1のようになります。

この続きは以下をご覧ください
https://www.school.ctc-g.co.jp/columns/nakai2/nakai284.html

Comment(0)