オルタナティブ・ブログ > 吉政忠志のベンチャービジネス千里眼 >

IT業界でベンチャービジネスの支援をしている執筆者が日々の活動ログと感じたことを、徒然なるままに書き綴っていきます。

グーグルのクラウドを支えるテクノロジー > 第71回 機械学習パイプラインにおける学習データの異常検知システム(パート2)

»

私が編集支援しているCTC教育サービスのコラム「グーグルのクラウドを支えるテクノロジー」第71回「機械学習パイプラインにおける学習データの異常検知システム(パート2)」が公開されました。

興味がある方はご覧ください。

###

はじめに

 前回に引き続き、2019年に公開された論文「Data Validation for Machine Learning」を元にして、機械学習モデルの学習データに含まれる異常を検知するシステムを紹介します。このシステムは、機械学習を利用するGoogle社内のプロジェクトで標準的に利用されているもので、その全体像は、前回の図1のようになります。この後の本文は、前回の図1を見ながら読み進めるとよいでしょう。

データスキーマによる異常検知

 学習データを収集するシステムである「Training data generation code」が収集・保存した「Training Data」、および、予測対象のデータを収集するシステムである「Serving data generation code」が収集・保存した「Serving Data」は、まずはじめに、「Data Analyzer」によって各種の統計情報が抽出されます。大規模な機械学習システムでは、これらのデータは膨大な量になるため、すべてのデータを個別にチェックするのは困難な場合もあります。あるいは、機械学習システムに特有のデータ異常を検知する上では、生データをそのままチェックするのではなく、事前に前処理を施した方がよい場合もあります。そのために、データの検証に必要十分な情報を抽出するのが、「Data Analyzer」の役割になります。
 
この続きは以下をご覧ください
https://www.school.ctc-g.co.jp/columns/nakai2/nakai271.html

Comment(0)