グーグルのクラウドを支えるテクノロジー > 第92回 Googleドライブ「クイックアクセス」機能のMLモデル開発(パート2)
»
私が編集支援しているCTC教育サービスのコラム「グーグルのクラウドを支えるテクノロジー > 第92回 Googleドライブ「クイックアクセス」機能のMLモデル開発(パート2)」が公開されました。興味がある方はご覧ください。
###
はじめに
前回に続いて、2017年に公開された論文「Quick Access: Building a Smart Experience for Google Drive」を元にして、Googleドライブの「クイックアクセス」機能を支える機械学習システムについて解説します。今回は、機械学習モデルの構成を中心に説明を進めます。
機械学習モデルの構成
前回の記事で説明したように、クイックアクセスで用いる機械学習モデルは、過去60日間にユーザーが使用したファイルのそれぞれについて、次にそのファイルを開く確率を予測するというものです。つまり、ユーザーが所有するファイルの属性情報を入力として、0〜1の確率値を出力する予測モデルになります。全体の構成は、図1のようになります。
この続きは以下をご覧ください
https://www.school.ctc-g.co.jp/columns/nakai2/nakai292.html
SpecialPR